Wie entwickeln sich neuronale Schaltkreise?

Während der Entwicklung neuronaler Schaltkreise müssen Nervenzellen über tausende von Synapsen korrekt miteinander verbunden werden, wobei Synapsen zumeist auf spezialisierte Strukturen von Nervenzellen, die Dendriten, verschalten, denn diese dienen dem Empfang von neuronaler Information. Allerdings ist weitgehend ungeklärt, nach welchen Prinzipien und mit welchen Mechanismen während der Entwicklung von Nervensystemen die Anzahl der Synapsen und die Größe der jeweiligen Dendriten aufeinander abgestimmt werden und wie verschiedene Synapsentypen auf ihren Zieldendriten verteilt werden. Ryglewski et al. (2017) haben nun durch genetische Manipulation an Nervenzellen der Fruchtfliege nachgewiesen dass verschiedene Synapsentypen um Dendriten ihrer postsynaptischen Partnerzelle konkurrieren, denn überwiegt während der Entwicklung die Aktivität eines Synapsentyps, wird diesem auf Kosten eines anderen Synapsentyps mehr dendritisches Material seiner Partnerzelle zugewiesen. Es können also abhängig von der synaptischen Aktivität Dendriten innerhalb einer Nervenzelle verschoben werden, sodass das Übergewicht eines Konkurrenten damit die Struktur und Funktion der Nervenzelle beeinträchtigt. Wird die Balance der synaptischen Aktivität beider Neurotransmittersysteme manipuliert, wird das Dendritenwachstum beeinflusst und die Synapsen auf den Dendriten werden umverteilt. Es kommt zur Konkurrenz zwischen den GABAergen und den cholinergen Synapsen, die um das Baumaterial wetteifern, auf das sie verschalten können. Wenn sich die beiden Konkurrenten nicht im richtigen Gleichgewicht befinden, wird das Baumaterial falsch verteilt. Die Ausgewogenheit zwischen hemmender und erregender synaptischer Aktivität ist daher für die strukturelle Homöostase von Nervenzellen enorm wichtig.


Obwohl das Gehirn sowohl für Mensch als auch für Tier von so zentraler Bedeutung ist, sind seine Ursprünge nach wie vor nicht geklärt. Die ersten Tiergehirne entstanden vor hunderten von Millionen Jahren, wobei heute nur noch die primitivsten Tierarten, wie etwa Wasserschwämme, kein Gehirn besitzen. Nach einer Studie könnten aber gerade Schwämme zur Entschlüsselung der Geheimnisse rund um die Entstehung von Neuronen und Gehirnen liefern. Zwar besitzen Schwämme keine Synapsen, doch ihr Genom kodiert dennoch viele der synaptischen Gene, die an der neuronalen Funktion bei höheren Tieren beteiligt sind. Um die Rolle der Gene in Schwämmen zu untersuchen, wandte man im Süßwasserschwamm Spongilla lacustris mikrofluidische und genomische Technologien an, mit deren Hilfe man einzelne Zellen von mehreren Schwämmen in Tröpfchen einfing und ein Profil der genetischen Aktivität jeder Zelle erstellte. Es zeigte sich, dass bestimmte Zellen in den Verdauungskammern der Schwämme diese Gene aktivieren, d. h., selbst bei diesen einfachen Tieren ohne Synapsen sind sie also in bestimmten Teilen des Körpers aktiv. Schwämme nutzen ihre Verdauungskammern, um Nahrung aus dem Wasser zu filtern und mit Mikroben in der Umgebung zu interagieren. Als man das Verhalten der Zellen visualisierte, bildeten Zellen lange Arme aus, um bakteriellen Eindringlinge zu beseitigen. Dieses Verhalten schaffte dabei eine Schnittstelle für eine gezielte Zell-Zell-Kommunikation, wie sie auch über Synapsen zwischen Nervenzellen im Gehirn von Tieren stattfindet. Möglicherweise sind solche Zellen, die die Nahrungsaufnahme regulieren und die mikrobielle Umgebung kontrollieren, evolutionäre Vorläufer der ersten tierischen Gehirne (Musser  et al., 2021).

Literatur

Musser Jacob M., Schippers Klaske J., Nickel Michael, Mizzon Giulia, Kohn Andrea B., Pape Constantin, Ronchi Paolo, Papadopoulos Nikolaos, Tarashansky Alexander J., Hammel Jörg U., Wolf Florian, Liang Cong, Hernández-Plaza Ana, Cantalapiedra Carlos P., Achim Kaia, Schieber Nicole L., Pan Leslie, Ruperti Fabian, Francis Warren R., Vargas Sergio, Kling Svenja, Renkert Maike, Polikarpov Maxim, Bourenkov Gleb, Feuda Roberto, Gaspar Imre, Burkhardt Pawel, Wang Bo, Bork Peer, Beck Martin, Schneider Thomas R., Kreshuk Anna, Wörheide Gert, Huerta-Cepas Jaime, Schwab Yannick, Moroz Leonid L. & Arendt Detlev (2021). Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science, 374, 717-723.
Ryglewski, Stefanie, Vonhoff, Fernando, Scheckel, Kathryn & Duch, Carsten (2017). Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material. Neuron, 93, 632 – 645.
http://www.uni-mainz.de/presse/aktuell/395_DEU_HTML.php (18-11-12)


Nachricht ::: Stangls Bemerkungen ::: Stangls Notizen ::: Impressum
Datenschutzerklärung ::: © Werner Stangl :::

Weitere Seiten zum Thema